记者从中国科学院空间应用工程与技术中心获悉,我国天宫二号上搭载的世界首台太空运行的冷原子钟已经实现预定科学目标,将目前人类在太空的时间计量精度提高1-2个数量级。该成果作为亮点文章于24日在线发表在国际重要学术期刊《自然·通讯》上。
2016年9月25日,天宫二号空间实验室成功发射并顺利进入运行轨道。在轨近两年时间里,其上搭载的冷原子钟运行正常、状态良好、性能稳定,完成了全部既定在轨测试任务,成功验证了在空间环境下高性能冷原子钟的运行机制与特性。
同时,它实现了天稳7.2×10-16的超高精度——3000万年误差小于1秒,将目前人类在太空的时间计量精度提高1-2个数量级。这是基于冷原子的空间量子传感器领域发展的一个重要里程碑。
所谓冷原子钟,就是把原子某两个能级之间的跃迁信号作为参考频率输出信号的高精度时钟,同时利用激光使原子温度降至绝对零度附近,使原子能级跃迁频率受到更小的外界干扰,从而实现更高精度。
在微重力环境下运行高精度原子钟则具有更重要意义。不仅可以对基本物理原理开展验证实验,也可发展更高精度的导航定位系统。但在存在地球辐射带干扰以及复杂的空间环境下,稳定运行一台精密的空间冷原子钟具有极大挑战。
天宫二号空间冷原子钟载荷分系统单位——中国科学院上海光机所研究团队经过十余年的攻关,突破了微重力环境下运行的冷原子钟物理系统、长期自主运行的冷原子制备与操控激光光学系统、铷原子钟超低噪声微波频率源等一系列关键技术,最终在国际上首次实现了冷原子钟的在轨稳定运行。
据介绍,这种能在空间环境下可靠运行的高精度原子钟应用于导航定位系统将会提升系统自主运行能力、提高导航定位精度。在基础物理研究方面,对推进基本物理常数测量、广义相对论验证等精密测物理的发展具有重要意义。此外,空间冷原子钟相关技术还将会应用于在空间量子传感器等多个领域。
这一成果也获得了国际同行的高度评价。比如:“在过去二十年有很多人努力要把冷原子钟送到空间,但是由中国第一次展示了空间的冷原子钟的实验……这是一项惊人的技术成就”;“该工作是空间冷原子实验研究的一个重要的里程碑”;“随着实验的成功,中国在天基冷原子传感器的研究走在了世界的最前沿”等等。
本文转载自人民网
延伸阅读:“高冷”原子钟是怎样炼成的
天宫二号空间冷原子钟功能结构与工作原理。中科院空间中心供图
2007年,在空间冷原子钟分系统首席科学家、中科院院士王育竹的指导下,刘亮所领导的空间冷原子钟团队成立,开启了跨越两代人、长达十余年的攻关。
上天的项目,不论是原理、样机,还是初样,正样,都有着严格的时间节点,更何况,他们要做的,是要将一台3000万年误差不到1秒的精密仪器,放到复杂的空间环境里稳定运行。
“要么在实验室,要么在出差的路上。”刘亮这样形容原子钟的研制过程。实际上,直到正样交付之后,刘亮才规定团队成员,以后加班时间不能再超过晚上11点。
团队突破了一系列关键技术,在空间微重力环境下利用激光把铷原子温度降低到接近绝对零度,利用激光和高精度微波场对制备的冷原子进行操纵和探测,提取出铷原子高稳定的能级跃迁频率作为高精度原子钟信号,在国际上首次实现了冷原子钟的在轨稳定运行。
除空间冷原子钟外,中科院牵头负责的载人航天工程空间应用系统在天宫二号上开展了14项空间科学与应用任务,涵盖了微重力基础物理、微重力流体物理、空间材料科学、空间生命科学、空间天文探测、空间环境监测、对地观测及地球科学研究应用以及应用新技术试验等八大领域。